Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 84 entries in the Bibliography.


Showing entries from 51 through 84


2017

Climatology of high-β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the \~45 keV to \~600 keV proton energy range in the inner magnetosphere (L < 5.8) has been constructed. In this paper we report this climatology of such high-β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high-β events in the RBSPICE energy range are associated with postdusk/premidnight sector particle injections or plasma patches and can last from minutes to hours. While most of these events have a β less than 2, there are a number of observations reaching β greater than 4. Other observations of particular note are high-β events during relatively minor geomagnetic storms and examples of very long duration high-β plasmas. We show that high-β plasmas are a relatively common occurrence in the inner magnetosphere during both quiet and active times. As such, the waves generated by these plasmas may have an underappreciated role in the inner magnetosphere, and thus the study of these plasmas and their instabilities may be more important than has been currently addressed.

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022513

climatology; high-beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL072316

EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes

2016

Climatology of high β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high beta (β) plasma events (defined here as β>1) as measured by the RBSPICE instrument in the \~45-keV to \~600-keV proton energy range in the inner magnetosphere (L<5.8) has been constructed. In this paper we report this climatology of such high β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high β events in the RBSPICE energy range are associated with post-dusk/pre-midnight sector particle injections or plasma patches and can last from minutes to hours. While most of these events have a β less than 2, there are a number of observations reaching β greater than 4. Other observations of particular note are high β events during relatively minor geomagnetic storms and examples of very long duration high β plasmas. We show that high β plasmas are a relatively common occurrence in the inner magnetosphere during both quiet and active times. As such, the waves generated by these plasmas may have an under-appreciated role in the inner magnetosphere, and thus the study of these plasmas and their instabilities may be more important than has been currently addressed.

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA022513

climatology; high beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed three orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important - and potentially dominant - source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day timescales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off\textquotedblright, geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Ion nose spectral structures observed by the Van Allen Probes

We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016JA022942

inner magnetosphere; ion injection; Ion structure; plasma sheet; ring current; Van Allen Probes

Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <\~ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.

Xia, Zhiyang; Chen, Lunjin; Dai, Lei; Claudepierre, Seth; Chan, Anthony; Soto-Chavez, A.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070280

chorus modulation; inner magnetosphere; ULF wave; Van Allen Probes; whistler wave

RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm

Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science observations. The dynamics of the source (approximately tens of keV) and seed (approximately hundreds of keV) populations of the radiation belts simulated with RAM-SCB is compared with Van Allen Probes Magnetic Electron Ion Spectrometer observations in the morning sector and with measurements from NOAA 15 satellite in the predawn and afternoon MLT sectors. We find that although the low-energy (E< 100 keV) electron fluxes are in good agreement with observations, increasing significantly by magnetospheric convection during both SYM-H dips while decreasing during the intermediate recovery phase, the injection of high-energy electrons is underestimated by this mechanism throughout the storm. Local acceleration by chorus waves intensifies the electron fluxes at E>=50 keV considerably, and RAM-SCB simulations overestimate the observed trapped fluxes by more than an order of magnitude; the precipitating fluxes simulated with RAM-SCB are weaker, and their temporal and spatial evolutions agree well with POES/Medium Energy Proton and Electron Detectors data.

Jordanova, V.; Tu, W.; Chen, Y.; Morley, S.; Panaitescu, A.-D.; Reeves, G.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022470

Geomagnetic storms; inner magnetosphere; Van Allen Probes

RBSPICE measurement of ion loss during the 2015 March storm: Adiabatic response to the geomagnetic field change

A strongly energy-dependent ring current ion loss was measured by the RBSPICE instrument on the Van Allen Probes A spacecraft in the local evening sector during the 17 March 2015 geomagnetic storm. The ion loss is found to be energy dependent where only ions with energies measured above \~ 150 keV have a significant drop in intensity. At these energies the ion dynamics are principally controlled by variations of the geomagnetic field which, during magnetic storms, exhibits large scale variations on timescales from minutes to hours. Here we show that starting from \~ 19:10 UTC on March 17 the geomagnetic field increased from 220 to 260 nT on a time scale of about an hour as captured by RBSPICE-A close to spacecraft apogee, L = 6.1 and MLT = 21.85 hr. [GSM coordinates X=-4.89, Y=3.00, Z=-0.73)]. We demonstrate the relationship between this large geomagnetic field increase and the drop-outs of the inline image 150 keV ring current ions.

Soto-Chavez, A.; Lanzerotti, L.; Gerrard, A.; Kim, H.; Bortnik, J.; Manweiler, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022512

inner magnetosphere; Magnetic Storms; Ring current ion.; Van Allen Probes

Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron waves, which are believed to contribute to loss of ring current ions and radiation belt electrons and therefore can be also important for inner magnetosphere dynamics.

Usanova, M.; Malaspina, D.; Jaynes, A.; Bruder, R.; Mann, I.; Wygant, J.; Ergun, R.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1710.1002/2016GL070233

cyclotron harmonic waves; energetic particle loss; Geomagnetic storms; inner magnetosphere; oxygen; Van Allen Probes

Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

Highly energetic electrons in the Earth\textquoterights Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300\textendash2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.810.1002/2016JA022775

distribution of chorus wave intensities in the inner magnetosphere; inner magnetosphere; Radiation belts; scale size of chorus wave packets; Van Allen Probes; Wave-particle interaction

Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L < 6.6

We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5\textendash6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency, (3) ion fluxes at 20\textendash50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+, (4) after a few minutes of the dipolarization, the flux enhancement at 0.1\textendash5 keV appears with a clear energy-dispersion signature only for O+, and (5) the energy-dispersed O+ flux enhancement appears in directions parallel or anti-parallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O+ ions at >20 keV. We conclude that O+ ions at L = 5.4\textendash6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5\textendash5.4, however, only the former acceleration is plausible. We also conclude that the field-aligned energy-dispersed O+ ions at 0.1\textendash5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.

e, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.; Larsen, B.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022549

Dipolarization; inner magnetosphere; ionospheric outflow; Magnetic Fluctuation; O+ Acceleration; substorm; Van Allen Probes

Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere

Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to theSYM-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of SYM-H index, the high-energy component (>100 keV) varies on much longer timescales and shows either no correlation or anticorrelation with the absolute value of SYM-H index. Our study also shows that the contributions of the low- and high- energy protons to the inner magnetosphere energy content are comparable. Thus, our results conclusively demonstrate that proton dynamics, and as a result the energy budget in the inner magnetosphere, do not vary strictly on storm time timescales as those are defined by the SYM-H index.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068013

energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes

Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere

Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to the Sym-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of Sym-H index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the absolute value of Sym-H index. Our study also shows that the contributions of the low- and high- energy protons to the inner magnetosphere energy content are comparable. Thus, our results conclusively demonstrate that proton dynamics, and as a result the energy budget in the inner magnetosphere, do not vary strictly on storm-time timescales as those are defined by the Sym-H index.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Geophysical Research Letters      Published on: 03/2016

YEAR: 2016     DOI: 10.1002/2016GL068013

energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes

2015

Global Empirical Models of Plasmaspheric Hiss using Van Allen Probes

Plasmaspheric hiss is a whistler mode emission that permeates the Earth\textquoterights plasmasphere and is a significant driver of energetic electron losses through cyclotron-resonant pitch angle scattering. The EMFISIS instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross-spectral matrix and enhanced low frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van Allen Probes data. First, we describe the construction of the hiss database. Then, we compare the hiss spectral distribution and integrated wave amplitude obtained from Van Allen Probes to those previously extracted from the CRRES mission. Next, we develop a cubic regression model of the average hiss magnetic field intensity as a function of Kp, L, magnetic latitude and magnetic local time. We use the full regression model to explore general trends in the data and use insights from the model to develop a simplified model of wave intensity for straightforward inclusion in quasi-linear diffusion calculations of electron scattering rates.

Spasojevic, M.; Shprits, Y.Y.; Orlova, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021803

Electron scattering; Empirical Model; inner magnetosphere; Plasmaspheric Hiss; Van Allen Probes

Kinetic Alfv\ en Waves and Particle Response Associated with a Shock-Induced, Global ULF Perturbation of the Terrestrial Magnetosphere

On 2 October 2013, the arrival of an interplanetary shock compressed the Earth\textquoterights magnetosphere and triggered a global ULF (ultra low frequency) oscillation. The Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfv\ en waves. This event suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfv\ en waves over large portions of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.

Malaspina, David; Claudepierre, Seth; Takahashi, Kazue; Jaynes, Allison; Elkington, Scot; Ergun, Robert; Wygant, John; Reeves, Geoff; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015GL065935

inner magnetosphere; interplanetary shock; Kinetic Alfven Waves; magnetosphere shock response; plasma waves; ULF waves; Van Allen Probes

Heavy-ion dominance near Cluster perigees

Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L-values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L-values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 hours, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L-shell and MLT of these heavy-ion-dominant time periods.

Ferradas, C.; Zhang, J.-C.; Kistler, L.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021063

charge exchange; Cluster; heavy ions; inner magnetosphere; plasma sheet; ring current

\textquotedblleftTrunk-like\textquotedblright heavy ion structures observed by the Van Allen Probes

Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report \textquotedbllefttrunk-like\textquotedblright ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant\textquoterights trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6\textendash2.6, MLT = 9.1\textendash10.5, and MLAT = -2.4\textendash0.09\textdegree, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5\textendash0.7 keV, L = 3.6\textendash2.5, MLT = 9.1\textendash10.7, and MLAT = -2.4\textendash0.4\textdegree. Results from backward ion drift path tracings indicate that the trunks are likely due to 1) a gap in the nightside ion source or 2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

Zhang, J.-C.; Kistler, L.; Spence, H.; Wolf, R.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.; Niehof, J.; MacDonald, E.; Friedel, R.; Ferradas, C.; Luo, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021822

inner magnetosphere; ion injection; Ion structure; magnetic cloud; magnetic storm; Van Allen Probes

Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations

This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. The results of the 4D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.

Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Spense, Harlan; Reeves, Geoffrey; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065230

inner magnetosphere; numerical simulations; Radiation belts; ring current; Van Allen Probes; wave-particle interactions

Global and comprehensive analysis of the inner magnetosphere as a coupled system: Physical understanding and applications

The third Inner Magnetosphere Coupling (IMC III) workshop was held March 2015 at University of California, Los Angeles. The workshop included extensive discussion of space weather and applications bring together scientists from the solar wind, magnetosphere and ionospheric communities as well as space weather stakeholders and researchers focusing on translational research and applications in industry.

Shprits, Y; Spasojevic, M.;

Published by: Space Weather      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015SW001295

inner magnetosphere; Space weather; workshop

Sub-packet structures in EMIC rising tone emissions observed by the THEMIS probes

We report sub-packet structures found in electromagnetic ion cyclotron (EMIC) rising tone emissions observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probles. We investigate three typical cases in detail. The first case shows a continuous single rising tone with obvious four sub-packets, and the second case is characterized by a patchy emission with multiple sub-packets triggered in a broadband frequency. The third case looks like a smooth rising tone without any obvious sub-packet in the FFT spectrum, while its amplitude contains small peaks with increasing frequencies. The degree of polarization of each sub-packet is generally higher than 0.8 with a left-handed polarization, and the wave direction of the sub-packets is typically field-aligned. We show that the time evolution of the observed frequency and amplitude can be reproduced consistently by nonlinear growth theory. We also compare the observed time span of each sub-packet structure with the theoretical trapping time for second-order cyclotron resonance. They are consistent, indicating that an individual sub-packet is generated through a nonlinear wave growth process which excites an element in accordance with the theoretically predicted optimum amplitude.

Nakamura, Satoko; Omura, Yoshiharu; Shoji, Masafumi; e, Masahito; Summers, Danny; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2014JA020764

EMIC wave; inner magnetosphere; The nonlinear wave growth; THEMIS

Low-harmonic magnetosonic waves observed by the Van Allen Probes

Purely compressional electromagnetic waves (fast magnetosonic waves), generated at multiple harmonics of the local proton gyrofrequency, have been observed by various types of satellite instruments (fluxgate and search coil magnetometers and electric field sensors), but most recent studies have used data from search coil sensors, and many have been restricted to high harmonics. We report here on a survey of low-harmonic waves, based on electric and magnetic field data from the EFW double probe and EMFISIS fluxgate magnetometer instruments, respectively, on the Van Allen Probes spacecraft during its first full precession through all local times, from October 1, 2012 through July 13, 2014. These waves were observed both inside and outside the plasmapause (PP), at L shells from 2.4 to ~6 (the spacecraft apogee), and in regions with plasma number densities ranging from 10 to >1000 cm-3. Consistent with earlier studies, wave occurrence was sharply peaked near the magnetic equator. Waves appeared at all local times but were more common from noon to dusk, and often occurred within three hours after substorm injections. Outside the PP occurrence maximized broadly across noon, and inside the PP occurrence maximized in the dusk sector, in an extended plasmasphere. We confirm recent ray-tracing studies showing wave refraction and/or reflection at PP-like boundaries. Comparison with waveform receiver data indicates that in some cases these low-harmonic magnetosonic wave events occurred independently of higher-harmonic waves; this indicates the importance of including this population in future studies of radiation belt dynamics.

Posch, J.; Engebretson, M.; Olson, C.; Thaller, S.; Breneman, A.; Wygant, J.; Boardsen, S.; Kletzing, C.; Smith, C.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021179

equatorial noise; inner magnetosphere; magnetosonic waves; Van Allen Probes; waves in plasmas

Van Allen Probes investigation of the large scale duskward electric field and its role in ring current formation and plasmasphere erosion in the June 1, 2013 storm

Using the Van Allen Probes we investigate the enhancement in the large scale duskward convection electric field during the geomagnetic storm (Dst ~ -120 nT) on June 1, 2013 and its role in ring current ion transport and energization, and plasmasphere erosion. During this storm, enhancements of ~1-2 mV/m in the duskward electric field in the co-rotating frame are observed down to L shells as low as ~2.3. A simple model consisting of a dipole magnetic field and constant, azimuthally westward, electric field is used to calculate the earthward and westward drift of 90\textdegree pitch angle ions. This model is applied to determine how far earthward ions can drift while remaining on Earth\textquoterights night side, given the strength and duration of the convection electric field. The calculation based on this simple model indicates that the enhanced duskward electric field is of sufficient intensity and duration to transport ions from a range of initial locations and initial energies characteristic of (though not observed by the Van Allen Probes) the earthward edge of the plasma sheet during active times ( L ~ 6\textendash10 and ~1-20 keV) to the observed location of the 58\textendash267 keV ion population, chosen as representative of the ring current (L ~3.5 \textendash 5.8). According to the model calculation, this transportation should be concurrent with an energization to the range observed, ~58-267 keV. Clear coincidence between the electric field enhancement and both plasmasphere erosion and ring current ion (58\textendash267 keV) pressure enhancements are presented. We show for the first time, nearly simultaneous enhancements in the duskward convection electric field, plasmasphere erosion, and increased pressure of 58\textendash267 keV ring current ions. These 58\textendash267 keV ions have energies that are consistent with what they are expected to pick up by gradient B drifting across the electric field. These observations strongly suggest that we are observing the electric field that energizes the ions and produces the erosion of the plasmasphere.

Thaller, S.; Wygant, J.; Dai, L.; Breneman, A.W.; Kersten, K.; Cattell, C.A.; Bonnell, J.W.; Fennell, J.F.; Gkioulidou, Matina; Kletzing, C.A.; De Pascuale, S.; Hospodarsky, G.B.; Bounds, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020875

electric field; inner magnetosphere; plasma convection; plasmasphere; ring current; Van Allen Probes

Acceleration of ions by electric field pulses in the inner magnetosphere

Intense (~5-15 mV/m), short-lived (<=1 min) electric field pulses have been observed to accompany earthward-propagating, dipolarizing flux bundles (DFB; flux tubes with a strong magnetic field) before they are stopped by the strong dipole field. Using Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations and test particle modeling, we investigate particle acceleration around L-shell ~7-9 in the nightside magnetosphere and demonstrate that such pulses can effectively accelerate ions with tens of keV initial energy to hundreds of keV. This acceleration occurs because the ion gyroradius is comparable to the spatial scale of the localized electric field pulse at the leading edge of the flux bundle before it stops. The proposed acceleration mechanism can reproduce observed spectra of high-energy ions. We conclude thatthe electric field associated with dipolarizing flux bundles prior to their stoppage in the inner magnetosphere provides a natural site for intense local ion acceleration.

Artemyev, A.V.; Liu, J.; Angelopoulos, V.; Runov, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021160

injections; inner magnetosphere; ion acceleration

Electric field structures and waves at plasma boundaries in the inner magnetosphere

Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field line resonances, nonlinear whistler mode waves, and several types of double layer. However, it is unclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the scenario that the sources of the free energy for the structures and waves of interest are localized near and comove with these boundaries. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed in part by the spatial extent and dynamics of macroscopic plasma boundaries in that region.

Malaspina, David; Wygant, John; Ergun, Robert; Reeves, Geoff; Skoug, Ruth; Larsen, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021137

injection; inner magnetosphere; nonlinear electric field structures; plasma boundary; plasma sheet; Van Allen Probes

Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

We study the formation process of an oxygen torus during the 12\textendash15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfv\ en waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M \~ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0\textendash4.0 and L = 3.7\textendash4.5, respectively, on the morning side. The oxygen torus has M = 4.5\textendash8 amu and extends around the plasmapause that is identified at L\~3.2\textendash3.9. We find that during the initial phase, M is 4\textendash7 amu throughout the plasma trough and remains at \~1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.

e, Nos\; Oimatsu, S.; Keika, K.; Kletzing, C.; Kurth, W.; De Pascuale, S.; Smith, C.; MacDowall, R.; Nakano, S.; Reeves, G.; Spence, H.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020593

inner magnetosphere; magnetic storm; oxygen torus; plasmasphere; ring current; ULF waves; Van Allen Probes

Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.

Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within ten minutes, with different dipolarization signatures and duration. The first one is a dispersionless, short timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations, and in-situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.

Gkioulidou, Matina; Ohtani, S.; Mitchell, D.; Ukhorskiy, A.; Reeves, G.; Turner, D.; Gjerloev, J.; e, Nos\; Koga, K.; Rodriguez, J.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020872

inner magnetosphere; Van Allen Probes

Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data

We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the ECT/MagEIS sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons >900 keV were observed with equatorial fluxes above background (i.e. >0.1 electrons/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes <200 keV exceeded the AE9 model 50\% fluxes and were lower than the higher energy model fluxes. Phase space density radial profiles for 1.3<=L*<2.5 had mostly positive gradients except near L*~2.1 where the profiles for μ = 20-30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do.

Fennell, J.; Claudepierre, S.; Blake, J.; O\textquoterightBrien, T.; Clemmons, J.; Baker, D.; Spence, H.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062874

inner magnetosphere; Inner radiation belt; Inner zone; trapped electrons; Van Allen Probes

Energetic electron injections deep into the inner magnetosphere associated with substorm activity

From a survey of the first nightside season of NASA\textquoterights Van Allen Probes mission (Dec/2012 \textendash Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells <= 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L<=4 injections are limited in energy to <=250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in the Pi 2 frequency range inside the plasmasphere. These observations demonstrate that injections occur at very low L-shells and may play an important role for inner zone electrons.

Turner, D.; Claudepierre, S.; Fennell, J.; O\textquoterightBrien, T.; Blake, J.; Lemon, C.; Gkioulidou, M.; Takahashi, K.; Reeves, G.; Thaller, S.; Breneman, A.; Wygant, J.; Li, W.; Runov, A.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063225

energetic particle injections; inner magnetosphere; Radiation belts; substorms; THEMIS; Van Allen Probes

Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave\textendashparticle interactions in the pre-midnight inner magnetosphere

We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

Korotova, G.; Sibeck, D.; Tahakashi, K.; Dai, L.; Spence, H.; Kletzing, C.; Wygant, J.; Manweiler, J.; Moya, P.; Hwang, K.-J.; Redmon, R.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-955-2015

inner magnetosphere; Van Allen Probes

2014

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

THEMIS measurements of quasi-static electric fields in the inner magnetosphere

We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L =3 during the most active times. The extensive dataset from THEMIS also confirms the day/night asymmetry on the dusk side, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawn side near L =4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L =7 rather than L =4. We also investigate the impact of the uncertain boom-shorting factor on the results, and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.

Califf, S.; Li, X.; Blum, L.; Jaynes, A.; Schiller, Q.; Zhao, H.; Malaspina, D.; Hartinger, M.; Wolf, R.; Rowland, D.; Wygant, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020360

convection; double probe; electric field; inner magnetosphere

The Comprehensive Inner Magnetosphere-Ionosphere Model

Simulation studies of the Earth\textquoterights radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5\textendash9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

Fok, M.-C.; Buzulukova, N; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020239

inner magnetosphere; magnetosphere-ionosphere coupling; ring current; Radiation belts; Van Allen Probes

On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event

On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90\% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent of the dropout. THEMIS and the Van Allen Probes observed telltale signatures of loss due to magnetopause shadowing and subsequent outward radial transport, including similar loss of energetic ring current ions. However, Van Allen Probes observations suggest that another loss process played a role for multi-MeV electrons at lower L shells (L* < ~4).

Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019446

dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes

2011

Understanding relativistic electron losses with BARREL

The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth\textquoterights atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(\~20kg) balloon payloads will be launched, providing multi-point measurements of electron precipitation in conjunction with in situ measurements from the two RBSP spacecraft, scheduled to launch in May 2012. In this paper we outline the scientific objectives of BARREL, highlighting a few key science questions that will be addressed by BARREL in concert with other ILWS missions in order to understand loss processes in the radiation belts. A summary of observations from the 2008/2009 BARREL test flight is also presented. Electron precipitation was observed during a geomagnetic storm on February 14\textendash18, 2009. This storm, though relatively weak (Dst=-36 nT), was remarkably effective in increasing the trapped electron population.

Millan, R.M.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2011.01.006

inner magnetosphere; precipitation; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions



  1      2